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Abstract 

I discuss our current understanding of cosmic string evolution, and 
focus on the question of small scale structure on strings, where most 
of the disagreements lie. I present a physical picture designed to put 
the role of the small scale structure into more intuitive terms. In this 
picture one can see how the small scale structure can feed back in a 
major way on the overall scaling solution. I also argue that it is easy 
for small scale numerical errors to feed back in just such a way. The 
intuitive discussion presented here may form the basis for an analytic 
treatment of the small scale structure, which I argue in any case would 
be extremely valuable in fllllng the gaps in our present understanding 
Of Cosmic string evolution. 

1 Introduction 

The last year has seen further advances in our intuitive and analytical under- 
standing of cosmic string networks [1,2,3,4,5]. Some of these advances wae 
presented in other papers at this workshop. Unfortunately, we still find our- 
selves relying on computers to understand many important aspects of COSMIC 
strings. Still worse, different computer programs give different answers to 
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the same physical questions. Still worse yet, the differences can be traced to 
differences in the algorithms at the scale of nsolution. 

Any numerical approximation to continuum physics has a “scale of res- 
olution” which by definition is where numerical errors are made. When one 
embarks on a numerical project it is with the hope that these errors wilI not 
have a large effect on the physics one wishes to extract from the calculation. 
In the best of all possible worlds we would be in the happy postion today of 
having two [1,2] (going on three(6,7]) different numerical schemes all telling 
us the same things about cosmic string physics. Instead, we are busy trying 
to understand which numerical errors are better at approximating physics. 

In the early days of cosmic strings we hoped that one scale, El= (the 
Hubble radius) was the only important scale. The cosmic strings would 
simply enter a scaling solution for which all important physics occurred on 
scales close to RH. Since then we have come to appreciate string statistical 
mechanics [8,9] which tells us that there is another scale, namely “O”, in 
the problem. A box of cosmic string will try to equilibrate and convert all 
the long string into the smallest possible loops. The expanding universe and 
the existence of non self-intersecting loops stop the equilibration process. 
However, to what small scale the equilibration process is allowed to proceed 
becomes a more delicate question. For example, any chance to interact which 
is artificially put in would drive the scale of smallest loops down even further. 
If physical interactions are neglected, artificially large loops would be allowed 
to survive. In this talk I try to develop an intuitive picture of how the small 
scale structure evolves and how it can feed back on the whole string network. 
I advocate this intuitive picture as the starting point for a more thorough 
analytical description of small scale physics on cosmic strings. 

I WilI also discuss a somewhat different issue. As I have just mentioned, 
the physics which determines the smallest physical scale in the problem is 
very delicate. In principle, however, such problems can still be handled 
numerically if the resolution scale can be made small enough. It is possible, 
however, that different numerical algorithms could give different physical 
pictures no matter how small the resolution scale is made. I wilI suggest 
that it is easy, in the cere of cosmic strings, to introduce numerical errors on 
the scale of resolution which profoundly affect the large scale physics. These 
effects can remain finite even for arbitrarily smalI resolution scales. 

I should say at the outset that I do not consider myself the first to become 
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concerned with small scale structure on string networks. Most notably, Ben- 
nett and Bouchet [2,4,5,10,11] have been articulating some of these concerns, 
and have gone to great lengths to develop numerical simulations which can 
keep track of small scale structure. The new simulations by Allen and Shel- 
lard [6] also pay particular attention to small scale structure on the strings. 
In the process of thinking through the material presented here I have be- 
come more sympathetic to the point of view that small scale structure may 
be present on the strings, and may cause at least some deviations from the 
standard scaling behavior. I hope to pass along these sympathies in this 
talk. However, I feel the point has yet to be proven, particularly because 
of the possibility that we are being mislead by numerical artifacts. Since 
the possibility of substantial numerical artifacts due to enhanced small scale 
structure has received relatively little attention, I will be emphasizing this 
possibility here. 

1.1 Differing pictures of cosmic string physics 

Before plunging into the details, let us assess what is at stake. After sll, there 
are many aspects of string evolution on which thereis general agreement. The 
one scale model works very well at describing the evolution of long strings, 
which do indeed scale with the Hubble radius. The long strings are described 
as random walks with a “step size” t (a Rx) which is also roughly their mean 
separation. This behavior is maintained as Iin grows via the breaking off of 
pieces of long string in the form of loops. 

It is also becoming clear that almost all the gravitational impact of the 
strings will be due to these long strings [12]. Thus, the relationship between 
cosmic strings and the formation of large scale structure in the universe can 
be studied (up to factors O(1)) wr ou understanding any of the unresolved ‘th t 
issues in cosmic string evolution. The overall density of long strings is uncer- 
tain by no more than a factor of four, which is not serious given the current 
understanding of structure formation. (Actually, some of the issues I will 
raise in this talk suggest that the uncertainties in the long string denstiy 
could be underestimates.) 

The real confusion has to do with the sizes of loops coming off the network 
of long strings. Although they are almost certainly too small to compete 
gravitationsJly with the long strings, the small loops hold the key to whether 
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cosmic strings are ruled out altogether. The issue here is the gravity wave 
bound as determined from millisecond pulsar timing 113). In most models 
with cosmic strings the dominant decay channel for cosmic string loops is 
into gravity waves. The absence of gravity wave effects in milllsecond pulsar 
timing experiments puts bounds on the density in gravity waves today. 

It turns out that the smaller the loops are initially, the more easily the 
gravity wave bound is avoided. The results of present simulations differ 
greatly as to the sizes of typical loops coming off the network, and thus on 
the nature of the gravity wave bound. One group, Albrecht and Turok (AT) 
[l] finds that the bound is on the verge of completely rtding out the most 
interesting cosmic string models, while another, Bennett and Bouchet (BB) 
[2], finds the bound to be much looser. 

So it is the question of small loops sizes where the most substantial uncer- 
tainties and disagreements lie. In fact, the real differences between the two 
coticting simulations lie not so much in the sizes of loops that are produced, 
but in the trends that are observed. The AT simulations are consistent with 
the loop production scaling with Ra. The BB simulations suggest the loop 
production scale decreases compared with the Hubble radius. It is when 
these different trends are extrapolated over cosmological time scales that the 
physical consequences differ significantly. 

2 Investigating the differences 

When I Srst heard of the trends observed in the BB simulation I was quite 
surprised, and I tried to find an intuitive picture that would support their 
results. What I will do now is describe what I find surprising about the BB 
results, and what I have learned in trying to get a physical feeling for what is 
going on. Much of the material presented here has emerged from discussions 
Neil Turok and I have had on this subject [14]. 

I take as my starting point the one scale model, which everyone agrees 
describes the long strings quite well. This model was iirst proposed by Kibble 
[Xl, and it has been further developed in [lo] and [l] . In this model the 
long strings, or at least their large scale features, are random walks of step 
size e. The mean separation of the strings is also O(l) so the string length 
density is cc t-s. It is generally agreed that the long string can start from 
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just about any sufficiently “random” initial conditions and reach the “fixed 
point” scaling solution. When the scaling solution is reached, [ evolves in 
proportion to I&. We are still dependent on the numerical simulations to 
determine the the constant of proportionality. The one scale model has also 
been shown to apply to the network as it approaches scaling [l]. 

The main idea behind the one scale model is that loop chopping process 
stabilizes when sll length scales Lve the same, up to geometrical factors which 
turn out to be O(1). If the mean separation of the strings is much larger 
than the scale of wiggles on individual strings, these wiggles will cause loops 
to break off and the long strings will straighten out. The straightening will 
continue until the individual long strings are straight on the scale of the 
separation of different strings. At that point the interactions among different 
strings will randomize any individual long string, and give it the random walk 
behavior. The fact that an individual wiggly string is straightened out by 
the chopping off of loops is supported by statistical mechanics [8,9]. 

If the mean separation is initially smaller than then scale of wiggles, 
the inter-string interactions will immediately act to introduce smaller scale 
wiggles. Thus, no matter what the initial conditions, it seems natural for 
the one scale behavior to settle in. It is important here that the motion of 
the strings is relativistic, so the relevant time scales are also O(t). When 
the effects of the expanding universe are taken into account, the one scale 
behavior leads directly to the fixed point scaling evolution discussed above. 

Although this one scale picture describes the general properties of the long 
string quite well, Bennett and Bouchet argue that wiggles on long strings do 
not get thoroughly straightened out by the chopping process, and there is 
a residue of small wiggles which builds up over time [2]. The idea seems 
to be that while statistically the straightening process is favored, the actual 
string evolution does not explore phase space sufliciently well to realize this 
behavior. None the less, they find that the scale of typical loops coming off 
the network is given by the scale of the small scale wiggles. 

The notion that phase space is not explored thoroughly by the strings does 
not seem impossible to me, since the network is never truly in equilibrium. 
However, I originally found the proposal by Bennett and Bouchet puzzling 
because the scale of small scale wiggles (which I call A here) is the scale 
on which most of their loops are produced. Clearly there are a great deal 
of interactions occurring on the scale A. Why should these interactions be 
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insufiicient to equilibrate the string on that scale? Furthermore, given that 
A is such an important scale, why is the overall rate at which energy comes 
off the long string independent of A ? Bennett and Bouchet report that the 
rate of energy loss only depends on [, which is the standard one scale result. 

To further explore these issues I will work with the flat spacetime string 
evolution equations. We will not be making significant errors in neglecting 
the expansion of the universe because we are concerned with scales much 
smaller than RR. 

2.1 The Kibble-Turok Sphere and small scale struc- 
ture 

The strings are described by 5((0, t) where Z is the position and o runs along 
the string. The flat spacetime string equations (the Nambu equations) are 
[16,171 

&7,t, = Z'(u,lt) .~ (1) 
subject to the gauge choice 

z.z=o (2) 

and 
(2)’ + (3)’ = 1 (3) 

where z’ = 65jat and Z’ = X/&r. Equation (2) means there are no lon- 
gitudinal modes, while Eq. (3) chooses a particular parameterization with 
constant energy per unit Q. The general loop solution can be written in terms 
of “right-movers” (Z) and “left-movers” (g) and is given by: 

;t(u,t) = ; [qu - t) + C(u + t,] 
Equations (2) and (3) translate into 

(I?)’ = (2)2 = 1 

so Z and 2 lie on the surface of a sphere with radius 1 (the “Kibble-Turok 
sphere”). Any solution to (1) represents a pair of curves on the Kibble-Turok 
sphere, one for Z(o - t) and one for C(V + t). String self intersections can 
result in sharp bends in the strings which, in the thin string limit used here 

6 



X 

Figure 1: A straight segment of string with its representation on the Kib- 
ble-Turok sphere 

look like d&continuities in g’ and 2 (or kinks). These kinks propagate along 
the string but do not become less discontinuous. 

Let us, for the moment, idealize the random walks of the one scale model 
as pe_rfectly straight string segments connected by kinks. The curves ii(o) 
and b(u) are then also generally composed of straight segments connected by 
kinks. A given segment of the string is made up of a left moving segment 
and a right moving segment, so 

i?= ++q 

and 

(6) 

As time evolves the left and right-movers go their separate ways and different 
Zand gsegments get matched up to makenew string segments. A given string 
segment appears on the Kibble-Turok sphere ss two points, one for a’ and 
one for 2 (see Fig. 1). 

Now let us introduce some smaller scale structure on the string, and let 
us approximate it too by straight links connected by kinks. From now on 
I will use the convention that “segments” refer to the large scale pieces (of 
length <) which make up the one scale random walks. I will use the term 
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Figure 2: Small wiggles correspond to the scattering of points around their 
average values on the Kibble-Turok sphere. Note that < Z > and < g > lie 
inside the sphere. Here the diamonds are the Z’s and the x’s are the 8s 

“links” for the straight bits that make up whatever small scale structure I 
may be discussing. The segments are no longer represented by pairs of points 
on the Kibble-Turok sphere, but by many points. 

Figures 2 and 3 show how different small scale structure might appear 
on the Kibble-Turok sphere. The points representing the individual links 
are scattered around in the general area of the averages < ?i’ > and < g >. 
The greater the degree of scatter, the more sharply the wiggles appear on 
the string. 

2.2 Backtracking 

As time evolves, different a’ and g segments will be paired up together. This 
process guarantees that at any time there will be segments somewhere on the 
string network where < cr’ > and < b > point in nearly opposite directions 
from each other. On these segments the < Z’ > is smaller than average, and 
< L? > is larger than average (see equations (6) and (7)). If the segments 
were truly straight these occurrences would correspond to places where the 
string was moving close to the speed of light. The small value of < 2’ > 
would then just reflect the fact that energy per unit physical length ((3)-r) 
is larger due to the high kinetic energy. (Remember, we have psrameterized 
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Figure 3: Sharper wiggles correspond to broader scatter on the Kibble-Turok 
sphere. 

the string so there is constant ener_gy per unit u.) 
However, when < a’ >e - < b > on a wiggly segment there is another 

effect that can occur, which I illustrate in Fig. 4. Due to the scatter on the 
Kibble-Turok sphere, there CBP be individual links which point opposite to 
the direction 0: the whole segment. In other words, the presence of wiggles on 
< Z > and < b > can result in back-tracking when the overall length of the 
segment is short. The increased energy per unit physical length associated 
with smsll < Z’ > comes not only from kinetic energy in this case, but from 
the crinkling up of the string as well. 

It seems natural that a string which back-tracks on itself will have a 
certain number of self intersection, and these intersections will usually break 
off loops of a size O(A), the size of the back-tracking links. However, the 
overall length which back-tracks depends on the length of the whole segment 
because the c a’ >e - - < b > condition which causes back-tracking persists 
over a length t. 

It is particularly interesting that the tendency to back-track is determined 
not by the number of wiggles per segment (t/A), but by the degree of scatter, 
or “sharpness” of the wiggles. Figure 5 shows a segment with more, but 
smaller wiggles than those depicted in Fig. 3. In some sense the segment in 
Fig. 5 might seem to be a better approximation to a straight segment, but 
it has just as much scatter as the segment in Fig. 3. One would expect the 



Figure 4: When < a’ >o - < b’ > some links (for example the cir- 
cled points) point in a direction opposite to that of the segment and cause 
Ubsck-tracking”. 

X 

Figure 5: This segment may look smoother than the one in Fig. 3, but it 
has the same degree of scatter on the Kibble-Turok sphere 
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tendency to back-track to be just as great in either case. When < a’ >X - < 
b’ > it would seem that the same proportion of energy would be tied up in 
crinkling rather than in kinetic energy, so the smoother looking segment in 
Fig. 5 is really no better an approximation to a truly smooth segment (for 
which small Z would be exclusively due to higher kinetic energy). 

This discussion has lead to a simple picture in which the scale of loops 
breaking off the long string is set by the scale of wiggles, A, while the rate at 
which energy comes off the long string seems to be set by the length scale of 
segments, <, over which a’ and b are each correlated. I will return to a more 
careful trestment of this point in section 3. 

Let me emphasize that the back-tracking occurs specifically when < a’ >X 
- < g >. This means that over most of the network (where a’ and a’ are not 

anti-parallel) the wiggles may show no particular tendency to back-track. 
Non the less, these very wiggles will, from time to time, find themselves in 
situations (when c g >SJ - < b’>) where they cause back tracking to occur. 

2.3 Time evolution of small scale structure 

Let us now try to understand how the small scale structure evolves in time. In 
flat spacetime the left and right-moving links available to the network never 
really change, and what is important is how they are rearranged with time. 
Here we will still assume the rough validity of the one scale model, which 
describes the equilibration of long strings into small loops via the growth 
of the single scale, t. We will focus on how the links get re-distributed to 
form segments which have correlations on the (ever increasing) scale < plus 
a growing bath of iniinitesimal loops. It will be useful to define the angle 0 
which represents the characteristic angle between a’ and < a’ > on a typical 
segment of long string. (The angle should be the same for both left and 
right-movers.) If aU the vectors 2’ for a given segment were plotted on the 
Kibble-Turok sphere, they would occupy a roughly conoshaped region (see 
Fig. 6 ) with an angle proportional to 8. 

The chopping off of loops from long string is the key process in the evolu- 
tion of 0, but it produces two competing effects. The chopping off of a loop 
removes some links from the long string, and leaves two links that were once 
separate partially intact, and connected by a kink. All this would appear 
visually on the Kibble-Turok sphere as the removal of some of the points, or 
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Figure 6: A right-moving segment represented on the Kibble-Turok sphere 
with vectors for all the links drawn in (forming a “cone” with angle or 0). 
The heavy vector represents < a’ >. 

vectors corresponding to the links. But the loop chopping acts to straighten 
the long string, so it has a tendency to merge the “cones” corresponding to 
nearby segments together, into one longer segment. This is not done by mov- 
ing any of the individual vectors, but rather by removing ones on the outer 
edges until a new merged cone takes on an identity of its own. This effect 
clearly tends to broaden 0, since as a given segment grows it incorporates 
new links which probably are not initially well aligned. 

On the other hand, viewed individually, the chopping off of loops tends to 
preferentially remove segments which backtrack, since any closed loop must 

backtrack in some place, as depicted in Fig. 7. This effect reduces 8. The 
competition between this effect and the merging of cones, which broadens 8, 
must be well understood if one is to determine the evolution of B. (I should 
add here that it is not enough to count the kinks per unit E as a measure of 
wiggliness of the segments. The effect of a small loop breaking off increases 
the number of kinks per [, but also smooths out the segment. A segment 
with many kinks can be very smooth if 6 is small!) 

The statistical mechanics of strings tells us that the chopping process acts 
to straighten out the long string, but we have seen how this can have two 
opposing effects on the evolution of 8. On the scale of the mean long string 
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Figure 7: Loop chopping preferentially breaks off back-tracking (or larger 6) 
links 

separation (Z 0 the straightening involves building up long segments out of 
pieces of shorter ones that point in different directions. It is not surprising 
that this process sharpens the wiggles and broadens B. On scales smaller 
than t where there already is some straightness (or correlation among links), 
the effect of chopping is to enhance this straightness and reduce 8. 

The interactions between different long strings tends to control the straight- 
ening process by randomizing the long string on large scales. On the Kibble- 
Turok sphere this has the effect of dividing up cones which become “over 
crowded” (segments that have become longer than average) by assigning 
parts of them to different strings. The main effect of this process is to insure 
the strings are randomized on a scale < which is roughly uniform throughout 
the network, as we have already assumed. The interactions of the long strings 
with small loops, however, provides another way that tJ can grow, since this 
effect adds randomly oriented links to the long string network. 

2.4 An example: standard flat spacetime simulations 

I now apply the above discussion to the standard flat spacetime cosmic string 
simulations [l&19], first performed by Smith and Vile&in More recently 
there has been a renewed interest in such simulations [20,3,21] because of 
the inconclusive nature of the expanding universe computations. In con- 
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Figure 8: All strings in the standard “cubic” flat spacetime simulations look 
like this on the Kibble-Turok sphere. 

trast to the expanding universe case the flat spacetime simulations find ezact 
solutions to the Nambu equations, correct on aU length scales. This is ac- 
complished, however, by choosing very special initial conditions. 

In these standard simulations one chooses initial conditions which are 
made up straight segments connected by kinks, similar to the string config- 
urations I have been discussing. The segments on the left and right-movers 
are restricted to all be the same length (which I call A), and to point along 
one of the z, y, or z Lu(es, in either direction. For such initial conditions the 
intersections always occur at kinks, and the restricted form of the left and 
right-movers continues to hold throughout the evolution. I will call these 
special string solutions “cubic solutions”. 

It is interesting to analyse these cubic solutions in the context of scatter 
on the Kibble-Turok sphere. The representation of any of the solutions on the 
KibbloTurok sphere sits entirely on iz, &y, and kz axes as depicted in Fig 
8. In order for a “straight” segment to be represented in some other direction, 
it must be composed of these six components in suitable proportions. Clearly 

no matter how small A is, there will be the same degree of scatter on the 
Kibble-Turok sphere, and 6’ will always be O(45”). 

For these special solutions, the different forces which evolve 0 must cancel 
exactly, since 9 is independent of time. Although exact, these special solu- 
tions will always be very bad approximations to smooth strings. No matter 
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how small one makes A there will be back-tracking due to the scatter on the 
Kibble-Turok sphere, whereas back-tracking will not be present on a smooth 
string. 

This is an example where one might be tempted to consider a L‘continuum 
limit” where as A + 0 any smooth string configuration could be represented 
by a cubic solution. Such a limit would not be correct, however, because 
“numerical errors” (namely back-tracking) on the scale A would cause loop 
production on the “scale of resolution”, A, which would not occur for a truly 
smooth string. These errors would not get smaller as A -P 0, because even 
though the sizes of individual erroneous loops would decrease, more would 
be produced. 

I should add that the back-tracking effect is not small. For example, if 
a pair of neighboring right moving links is randomly assigned a pair of left 
moving links, chances are l/36 that a closed loop is formed. Considering that 
the overall chopping efficiency is O(l/lO) in a scaling network, back-tracking 
must play a significant role. 

Cubic solutions are inadequate at approximating smooth strings because 
they are stuck with left and right-movers that only point in a few directions. 
A real string network, of course, contains links pointing in a greater variety 
of directions. In principle the loop chopping can systematically remove the 
most deviant links and result in much smoother segments of string. One 
wonders, however, how efficient the dynamics would be at making sure the 
right segments were in the right places to produce smooth segments. (In the 
language of the previous section, I am asking if the forces which reduce 6 are 
all that efficient.) In the limit where this efficiency is poor, the real physics 
of cosmic strings might closely resemble the physics of the cubic solutions. 

3 Estimating loop production: Is there scal- 
ing? 

Let us try to estimate the effect of “back-tracking” on the rate of energy loss 
from long string. In particular, I will discuss the total length lost into all 
loops from a segment of length t in a time {, Only in the case where this 
rate depends only on 6 can one expect the one scale model to be valid. The 
arguments in this section are rough, and mainly meant to give a feeling for 
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the complexity of the problem and for the likelihood of scaling to occur. 
Let us start by considering one (length <) right-moving segment as it 

runs past a left-moving segment (also length 0, a process which takes a time 
t. During this time different individual left and right moving links wilI be 
matched up with one another in succession. A given series of right-moving 
links will break off when it meets up with a series of left-moving links which 
has equal length in cr and equal but opposite net length in physical space. 
(That is, Zr - a’r = -(& - &) a 2; = Zr which is the condition for a self 
intersection. (221 ) In the course of a time t a series of right-moving links 
will have more than one chance to meet up with the “perfect” series of left 
moving links to close off and form a loop. 

Naively, one might think that if one halved A (holding < fixed), twice 
as much back-tracking would occur on a length t, and that would exactly 
compensate for the fact that the typical loops produced would be half as 
large. In that case the total length of string lost from a length t in a time 
E would be independent of A, and the one scale model would be valid. One 
reason why this picture is too naive is that the smaller one makes A, the 
more chances a given group of, say, five links has of finding a match in a time 
t. The number of chances is proportional to e/A, so this is one way the scale 
A can enter the problem. 

The scale A can enter in other ways as well. For example, as A gets 
smaller there will be more opportunities for longer bits of string (made up of 
more links) to back-track on themselves. This is just because a length t will 
be made up of more links. Both theeffects I have mentioned indicated the 
energy loss rate will increase es A gets small. This suggests the possibility 
that for small enough A, loop production is suflicient to really smooth out 
the long strings on that scale. Furthermore, this critical value of A could 
well wind up being proportional to t, in which case the one scale model could 
survive. A systematic analysis would be needed to determine if this is the 
case. 

I have been tempted to use these arguments to build a specific model of 
energy loss due to back-tracking. Do do so, however, one needs to flesh out 
the picture in a number of ways. For example, one needs a model for how 
6 evolves. And one needs a description of how the correlations among the 
kinks goes from being well correlated on scales 0(</2) to being much less 
correlated on the scale A. That is, one needs more details about the starting 
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point than can be specified by 0, <, and A alone. One can then model the 
evolution of these quantities. I have not found a complete set of starting 
assumptions that I have been happy with, so I have no further progress to 
report here. However, this seems like an area that could be quite fruitful. 

4 Conclusions 

I have described how small scale wiggles on long string can lead to signifi- 
cant production of loops whose sizes are given by the scale of those wiggles. 
This effect occurs when right and left-moving segments which are roughly 
anti-parallel get matched up for a period of time, causing back-tracking (or 
crinkling) of the string. The length of string and period of time over which 
this anti-parallel property is approximated can be much larger than the scale 
set by the wiggles themselves. It is the importance of this larger scale that 
makes such loop production particularly significant. Bennett and Bouchet 
[2,4] describe how in their simulations macroscopic segments of long string 
(“parent regions”) are removed due to the production of “essentially micro- 
scopic” loops. What they see seems to fit nicely with the picture I have 
described here. 

Because the small scale structure can have such an important role in the 
overall evolution of a string network, it must be well understood. For exam- 
ple, as I emphasized in section 2.4, the standard “cubic” solutions used in flat 
spacetime simulations involve very specific choices of small scale behavior. 
The fact that these solutions are exact does not mean they answer the ques- 
tions you want to answer, unless the choice of small scale behavior matches 
the physical problem at hand. Letting the scale of small structure go to zero 
does not arbitrarily increase the applicability of the cubic solutions, because 
macroscopic artifacts of the small scale structure remain. 

Likewise, all curved spacetime numerical simulations make some assump- 
tions about the small scale string structure. So far, I believe none of these 
assumptions have been carefully justified. The AT simulations use an algo- 
rithm which introduced numerical diffusion on the scale of resolution. If one 
accepts the AT results one is sssuming that any sharp wiggles lost to the 
diffusion would not have had much impact if they had been left in. On the 
other hand, the BB simulations go to great trouble to avoid numerical dif- 
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fusion, and they keep specific track of kinks. Nonetheless, it is unavoidable 
that finite numerical schemes introduce numerical artifacts. 

An artifact in the BB simulations involves the “merging” of kinks [2] 
which they say occurs at some string intersections. The details of this merg- 
ing process have yet to be published, but one is left wondering what the 
effect of this process is on sharpness of wiggles on the string (that is, on 6’ as 
described in section 2.3). The production of a loop tends to smooth out the 
string by preferentially removing the sharpest wiggles (see Fig. 7). In doing 
so, the number of kinks on the long string is increased. If these kinks are 
then merged, is the resulting kink sharper. 7 If so, is this artifact sufficient to 
change the physics results? These are questions which must be answered in 
order to judge the validity of the algorithm. 

It is clear that the assumptions about small scale behavior implicit in 
the AT and BB algorithms are sufficiently different to yield different results. 
From the numerical point of view, the best hope for progress lies with the 
newer algorithms [2,6] which are designed to treat small scale structure more 
carefully. For example, if the merging in the BB algorithm does appear to 
be a 8 increasing process, perhaps the easiest test would be to substitute 
the merging with a 0 decreasing version. I believe this would still give less 
smoothing than AT’s outright numerical diffusion, and if we are lucky, the 
two merging algorithms might not give substantially different physics. 

Still, it would be much more satisfying if an analytic description of the 
small scale structure on cosmic strings could be developed. Then we could 
be confident in extrapolating our understanding to cosmic time scales. For 
example, the discussion in section 3 suggested that the one scale model may 
not be entirely correct, since the scale of small wiggles may introduce another 
scale into the problem. We already see indications in flat spacetime simu- 
lations that the long strings might be deviating from the simple one scale 
behavior [3,20,21]. 

The one scale behavior is observed in all the expanding universe string 
simulations, but this could to some extent be GUI illusion. In the expanding 
universe case there are transients associated with the differences between the 
initial conditions and the “fixed point” solution. If there are other transients 
as well, initial conditions can be found where the two transients roughly can- 
cel over the relatively short duration of a numerical simulation, suggesting 
an incorrect fixed point solution. This problem appeared in the interpreta- 
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tion of the first string simulations [23], where numerical artifacts resulted 
in an artificially low quote for the scaling density. Even if the one of the 
current simulations is essentially free of numerical artifacts, this cancelling of 
“transients” could be misleading us as to the validity of the one scale model. 

In conclusion, the small scale structure on cosmic strings can have a 
substantial impact on many different length scales. At this point I feel the 
role of this structure in the evolution of cosmic string networks has yet to be 
pinned down. Although this issue is being handled with an increasing degree 
of numerical sophistication[2,4,5,7,6], we would be much better off if we had 
an analytical understanding of what was going on. The material discussed 
here was designed to aid the intuition, but it also provides a framework 
whithin which to further develop analytical methods. 
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